Evaluation of Energy Consumption in Matrix Computations
Using Compressed Data

Abdelmouhaimen Sarhane
University of Perpignan - E.N.A.C, FR

Abstract

This paper presents an evaluation of energy consumption in matrix computations using com-
pressed data. The objective is to compare the energy efficiency of blaz, a lossy compression method
that allows direct computation on compressed data, with zfp, another compression method, and
no compression. The study utilizes the PowerJoular tool for energy consumption measurement
and develops C codes implementing elementary matrix computations. The methodology includes
analyzing the energy gains achieved by blaz and comparing them with zfp and no compression.
The findings demonstrate the potential of blaz to significantly reduce energy consumption in ma-
trix computations, offering promising prospects for sustainable scientific computing practices.

Keywords : Green computing; energy consumption; Floating-point arrays; compressed data; sustain-
able computing; blaz; zfp.

I Introduction

Scientific computing plays a crucial role in conducting extensive numerical simulations in various fields
of science and industry. However, these simulations often require substantial computational power and
handle vast amounts of data, measured in exaflops and petabytes.

One of the key challenges in dealing with large data sets is the need for efficient storage, communi-
cation, and processing. Traditional storage methods often fall short in terms of scalability and energy
efficiency when handling the immense volumes of scientific data. Additionally, the transmission and
processing of such data require substantial energy resources. As a result, the development of sustain-
able science based on frugal computing solutions has become a critical area of research, addressing the
need for energy-efficient techniques that can handle these large data sets.

In recent years, various compression techniques have been proposed to alleviate the storage bur-
den associated with scientific data. These techniques focus on reducing the memory requirements
of floating-point number arrays used in scientific computations [3, 1]. Although these methods have
proven effective in saving memory, they introduce additional computational overhead due to the com-
pression and decompression processes required before data processing. This trade-off between memory
gains and increased computational resources poses a significant challenge in achieving energy-efficient
scientific computing.

To address this challenge, a new lossy compressor called blaz has been recently proposed for 2D
floating-point number matrices [4]. Blaz allows for direct computation on compressed data without
the need for decompression, enabling significant memory and computational time savings compared to
traditional compression techniques. Basic linear algebra operations, such as dot product, addition, and
multiplication by a matrix or a constant, can be performed directly on compressed matrices using blaz.

The objective of this research is, using the PowerJoular tool [5], to evaluate the energy consumption
of different methods for performing elementary matrix computations, specifically comparing blaz with
another compressor called zfp [3], as well as the scenario of no compression. By assessing the energy
consumption of these methods, we aim to determine the energy efficiency gains achieved by blaz and

compare them to alternative approaches.

Moreover, we apply the compressors to a practical sports field scenario, specifically football match
analysis. Analyzing player movement heatmaps is a crucial tool used by coaches, analysts, and sports
scientists to understand player positions, patterns, and tactical behavior during matches. We compute
the average player movement heatmap using blaz and zfp compressors and evaluate their energy con-
sumption, demonstrating the applicability of these methods beyond scientific computing.

IT Tools
L1 Zfp

ZFP is a fixed-rate compression scheme for floating-point data that aims to provide near-lossless
compression while allowing random access to the compressed data. Inspired by fixed-rate texture
compression methods used in graphics hardware, ZFP maps small blocks of 4¢ values in d dimensions
to a fixed, user-specified number of bits per block. This enables read and write random access to
compressed floating-point data at the granularity of blocks.

The compression process in ZFP involves (1) aligning the values in a block to a common exponent
and (2) converting them to a fixed-point representation;(3) an orthogonal block transform is then ap-
plied to decorrelate the values, and (4) the resulting coefficients are ordered by expected magnitude.
(5) Finally, the coefficients are encoded one ”bit plane” at a time [3]. ZFP supports truncating the bit
stream at any point, allowing for flexible bit rate selection using a single compression scheme.

ZFP uses a software write-back cache of uncompressed blocks to enhance random access capabilities.
This cache reduces the frequency of compression and decompression operations, thereby minimizing
the need for compression or decompression with every data access. However, for the purpose of com-
paring compressors, we will disable this feature.

ZFP offers several advantages, including efficient compression and decompression, support for ran-
dom access reads and writes, and the ability to specify the precise number of bits allocated to each
array. The design of ZFP prioritizes computational simplicity and speed, making it suitable for poten-
tial hardware implementations. Its performance and applicability have been demonstrated in various
domains, such as visualization, quantitative data analysis, and numerical simulation. [3]

II.IT Blaz

Blaz is a lossy compression technique for 2D arrays of floating-point numbers that enables direct
computation on compressed data without the need for decompression. It aims to reduce storage
requirements and computational resources while maintaining acceptable accuracy. The compression
scheme used by Blaz involves (1) block splitting, (2) block normalization, (3) prediction, (4) block
transform, and (5) quantization. (Figure 1)

block . 0 ’
o e redict
splitting =t normali p — transform —= guantize
B4 binary 64 B4 binaryGd B4 intg B5intE 200nts
+ 2 binary 64 + 2 binary 64 + Z binaryg4 + 2 binaryb4
4096 bits 4224 bits 640 bits 648 bits 360 bits

Figure 1: Overview of blaz compression scheme [4]

Block splitting is performed to divide the original matrix into smaller blocks, typically 8x8 in size.
Block normalization is carried out to reduce the range of values within each block by computing the

differences between consecutive elements. Prediction is then applied to approximate the slopes of the
normalized block using a set of pre-defined slopes as references. The block is further transformed using
a Type IT two-dimensional discrete cosine transform (DCT) to aggregate large coefficients. Finally,
quantization is performed by discarding small coefficients and keeping only the elements of the first
two lines and columns of the transformed matrix. The compressed data structure of Blaz consists of 29
8-bit integers and 2 binary64 floating-point numbers per block, resulting in a compression rate of 11.37.

The compression scheme enables direct computation on compressed matrices using basic linear al-
gebra algorithms. These algorithms facilitate operations such as addition, multiplication by a constant,
dot product, and matrix multiplication to be performed directly on the compressed matrices.

Experimental results have shown that Blaz offers significant speedups in execution time compared
to standard uncompressed matrices and other compressors, such as zfp. While Blaz may introduce a
slightly higher loss of accuracy compared to zfp, the trade-off is deemed acceptable in many contexts. [4]

II.ITIT PowerJoular

PowerJoular is a software power monitoring tool designed to help software developers, system ad-
ministrators, and automated tools in understanding and analyzing the power consumption of their
programs and devices.[5] The tool offers support for multiple platforms, including PCs, servers, and
single-board computers like Raspberry Pi. For servers, it utilizes the Intel RAPL interface through
Linux to monitor power consumption. Additionally, PowerJoular is written in Ada, a programming
language renowned for its energy efficiency. This choice of language ensures that PowerJoular is a
low-impact tool that actively contributes to energy efficiency efforts.[5]

PowerJoular is designed to automatically detect the hardware configuration and supported modules
of a system, allowing it to provide accurate power data. It utilizes the Intel RAPL power data through
the Linux powercap interface to monitor the CPU power consumption. By aggregating power readings
from various components such as CPU cores, integrated graphics, memory controller, and last level
caches, PowerJoular calculates the overall power consumption of the system. If supported, it can also
monitor GPU power consumption using NVIDIA’s System Management Interface.[5]

PowerJoular offers a command-line interface for flexibility, allowing users to display power moni-
toring data on the terminal or write it to CSV files. The tool provides continuous and automated mon-
itoring capabilities through its systemd service, enabling the collection of runtime power consumption
data for servers and devices. It also allows integration with external frameworks or dashboards, fa-
cilitating the visualization and analysis of power data from multiple servers or Raspberry Pi devices.[5]

Furthermore, PowerJoular can monitor the power consumption of individual processes by speci-
fying their process ID (PID) at runtime. This feature enables users to track power data for specific
applications or software components. [5]

In conclusion, PowerJoular is a versatile power monitoring tool that offers multi-platform support,
accurate power estimation models, and flexible data collection options. It aims to assist software de-
velopers and system administrators in understanding and optimizing the power consumption of their
programs and devices, ultimately contributing to the development of energy-efficient software.

IIT Energy Measurments
III.I Methodology

C codes will be developed to implement various elementary matrix computations, including dot prod-
uct, addition, multiplication by a matrix, and multiplication by a constant. These computations will
be performed on matrices represented in blaz format, compressed using zfp, and in the uncompressed

state for comparison.

In addition to elementary matrix computations, we will compare the energy consumption when
combining multiple operations before re-compressing the data. This reflects real-world scenarios where
matrices undergo sequential computations. We will focus on combining multiple additions or combin-
ing addition and multiplication by a matrix, as these operations are frequently encountered in matrix
computations and can significantly affect energy consumption.

The specific methods employed to measure energy consumption, as well as a detailed explanation
of what is being measured, are outlined in Section IIT.II.

A fixed-rate of 11.37 for blaz and adjusting zfp to match the same rate and a range of [16 X 16-
8192 x 8192] matrix sizes will be considered to capture diverse computational scenarios. The experi-
ments will be conducted multiple times to account for variations and ensure reliable results.

Energy Consumption Measurement: The PowerJoular tool [5] will be utilized to measure the energy
consumption of each computation scenario. PowerJoular provides energy consumption measurements,
enabling evaluation of the energy consumed during the execution of matrix computations.

We performed our experiments on a PC equipped with an Intel Xeon CPU E5-2603 v3 and 16GB
of RAM. The PC was running Ubuntu 22.04.2 LTS with kernel version 5.19.0-46 and GCC version
11.3. In order to focus solely on measuring the energy consumption of the CPU, we disabled the
GPU to prevent parallel execution during the experiment. By doing so, we ensured that the proccess
in running in the CPU only and the energy measurements were specifically attributed to the CPU’s
power usage.

III.ITI Methods
III.I1.1 Elementary Operations

Algorithm 1 Blaz Operations

Require: Two or One Compressed Matrix of size N x N
We Start PowerJoular simultaneously to measure energy
for [<~ 0 to Njyop do
perform operations on Matrices
end for

Algorithm 2 Zfp Operations

Require: Two or One Compressed Matrix of size N x N
We Start PowerJoular simultaneously to measure energy
for [< 0 to Niyp do
Decompress Matrices
perform operations on Matrices
Compress the result matrix
end for

Algorithm 3 No Compression Operations

Require: Two or One Uncompressed Matrix of size N x N
We Start PowerJoular simultaneously to measure energy
for [<~ 0 to Niyp do
perform operations on Matrices
end for

ITII.I1.2 Sequence of Operations

Algorithm 4 Blaz Operations

Require: A number Nyperations + 1 of compressed Matrices of size 512 x 512

We Start PowerJoular simultaneously to measure energy
for [<~ 0 to Njyep do

for i <~ 0 to Noperations dO

perform operation between current compressed Matrix and compressed result

Matrix

end for
end for

Algorithm 5 Zfp Operations

Require: A number Nyperqtions + 1 of compressed Matrices of size 512 x 512
We Start PowerJoular simultaneously to measure energy
for [<~ 0 to Njoep do
for i < 0 to Noperations do
Decompress current matrix
perform operation between current Matrix and result Matrix
end for
Compress result matrix
end for

Algorithm 6 No Compression Operations

Require: A number Nyperqtions + 1 of uncompressed Matrices of size 512 x 512
We Start PowerJoular simultaneously to measure energy
for [<0 to Njyp do
for i < 0 to Noperations do
perform operation between current Matrix and result Matrix
end for
end for

ITI.ITT Results

The obtained energy consumption measurements of each operation for a N x N Matrix of double
numbers are shown in figure 2 .

1000

1000
blaz ——1 blaz 1
2fp zip
no compression o compression
100 -
100 - B
x —
~ 10 -
10 £ *
_ - N -
x
1 1 } —
- —~ ~ =
e T o -
= - _— s o o e
T ~ _— @
5 o1 g =3 —
g P g g i e
& — p & ool _—
~ — = —
001 — 1/ —~ _—
- _~ 0.001 = o]
i _—
0.001 o / il
- _ 0.0001 | = 4
/ —F
00001 = 3105 £ - 4
-
_—
110 1x10
16 3 64 128 256 512 1024 2048 4096 8192 16 2 64 128 256 512 1024 2048 4096 8192
N N
(a) (b)

Energie (J)

1x10°7 L L L L L L ! L
16 32 64 128 256 512 1024 2048 4096 8192

N

()

Energie ()

1000

100

01

0.001

0.0001

blaz +——
D
no compression

64 128 256 512 1024

(d)

Figure 2: Energy consumption of operations in function of the size of the matrices (energy given in
10-logarithmic scale and N in 2-logarithmic scale). Top left: Addition. Top right: Multiplication by a
constant. Bottom left: Dot product. Bottom right: Matrix multiplication.

The results of the experiments demonstrate that blaz compression can result in energy savings in
matrix computations compared to both zfp compression and the uncompressed state, with the ex-
ception of the dot product operation. In addition and multiplication by a constant operations, blaz
compression shows a more significant reduction in energy consumption. However, in the case of matrix
multiplication, especially for large matrices, the advantage of blaz compression diminishes slightly,
particularly for very large matrices.

As shown in Figure 2¢ blaz compression does not outperform the uncompressed state in terms of
energy consumption for the dot product operation This can be attributed to the additional operations
involved in the dot product algorithm when using blaz compression.

Figure 3 presents the results of the energy measurement for a sequence of operations. The experi-
ment was conducted using a matrix size of 512 x 512 for the additions-only sequence and a matrix size
of 128 x 128 for the combined addition and multiplication sequence.

100 T 100

Energie ()
Energie ()
X

\
\

Number of operations Number of operations

(a) (b)
Figure 3: Energy consumption of a sequence of operations (energy given in 10-logarithmic scale and
Number of operations in 2-logarithmic scale). (a): Addition operations Only. (b): Addition and
Multiplication sequence of operations

Blaz consistently demonstrates the lowest energy consumption across the various operations, indi-
cating its superior energy efficiency compared to zfp and the uncompressed approach. This suggests
that blaz’s ability to directly compute on compressed data without the need for decompression and
recompression significantly reduces the energy requirements for matrix computations.

On the other hand, zfp shows higher energy consumption compared to blaz, due to the additional
computations involved in compressing and decompressing the data. The compression and decompres-
sion processes in zfp introduce overhead, resulting in increased energy consumption.

These findings support the potential of blaz as an energy-efficient compression technique for matrix
computations.

IV Application to Sport Field: Football Match Analysis

In the context of sports analysis, especially in football, gaining insights into player movements and
positioning is crucial for enhancing team performance, devising effective strategies, and making data-
driven decisions. Analyzing player movement heatmaps is a valuable tool used by coaches, analysts,
and sports scientists to understand player positions, patterns, and tactical behavior during matches.

A typical player movement heatmap consists of a 2D array of floating-point numbers, where each
value represents the player’s presence or activity level in a specific region of the football pitch. For
instance, we can create a heatmap where each value corresponds to the average number of times a
player has been present within a 10 cm? region of the pitch across the last 10 matches. Considering
a standard football pitch size of 105 meters x 68 meters, the resulting heatmap array would approxi-
mately have dimensions of 1048 x 680.

In this study, to evaluate the energy efficiency of the compressors in computing the average player
movement heatmap, we will generate random heatmaps simulating player positions for comparison.
These random heatmaps will serve as a benchmark to assess the energy consumption of blaz and zfp
compressors when processing player movement data from the last 10 matches.

The energy consumption measurements obtained from computing the average of ten floating-point
arrays of size 1050 x 680 are shown in Table 1 .

H Blaz Ztp No Compression H
Energy (mJ) 528 +53 5700 4 530 2360 + 162
Time (ms) 374 0.08 420+ 4 175+1

Table 1: Energy consumption measurements to calculate the average of ten heatmaps.

Since blaz enables direct computations on the compressed data, it reduces the computational over-
head and storage requirements, thereby leading to potential energy savings.

Assume that there are approximately 100,000 football matches played worldwide every year, each
involving at least 10 players whose movement needs to be analyzed using player movement heatmaps.
For simplicity, let’s assume that the average energy consumption difference between blaz and zfp is 5
Joules, as shown in Table 1.

This means that by using blaz in football match analysis for all matches worldwide, the football
community can potentially save approximately 5 megajoules of energy annually. To put this into
perspective:

5 MJ is About 0.16% of the average US household energy consumption in a month It is also roughly
equivalent to the energy generated by burning around 1.2 liter of gasoline.[2]

These numbers demonstrate the impact that adopting energy-efficient techniques like blaz can have,
not only in football match analysis but in various other data-intensive fields as well.

V Conclusion

In conclusion, this research evaluated the energy consumption of matrix computations using com-
pressed data, comparing blaz, zfp, and no compression scenarios. The results consistently showed
blaz’s superior energy efficiency, reducing energy consumption in addition, multiplication by a con-
stant, dot product, and matrix multiplication operations compared to zfp and the uncompressed state.
This demonstrates blaz’s potential for sustainable computing practices.

The application of blaz and zfp in football match analysis also highlighted blaz’s energy-saving ad-
vantage. By computing average player movement heatmaps, blaz outperformed zfp in terms of energy
efficiency when processing data from the last 10 matches.

These findings are significant for promoting green computing and reducing the environmental im-
pact of scientific data processing. Future research can explore the energy efficiency gains for different
computations and larger matrices, optimizing compression techniques for diverse computational sce-
narios.

In summary, this study emphasizes the importance of energy-efficient approaches in scientific com-
puting, providing valuable insights for developing sustainable and frugal computing solutions in the
future.

References

[1] Sheng Di and Franck Cappello. “Fast error-bounded lossy HPC data compression with SZ”. In:
2016 ieee international parallel and distributed processing symposium (ipdps). IEEE. 2016, pp. 730—
739.

[2] US EIA. How much electricity does an American home use. 2021.

[3] Peter Lindstrom. “Fixed-rate compressed floating-point arrays”. In: IEEE transactions on visu-
alization and computer graphics 20.12 (2014), pp. 2674-2683.

[4] Matthieu Martel. “Compressed Matrix Computations”. In: 2022 IEEE/ACM International Con-
ference on Big Data Computing, Applications and Technologies (BDCAT). IEEE. 2022, pp. 68—
76.

[5] Adel Noureddine. “PowerJoular and JoularJX: Multi-Platform Software Power Monitoring Tools”.
In: 18th International Conference on Intelligent Environments (IE2022). Biarritz, France, June
2022.

	Introduction
	Tools
	Zfp
	Blaz
	PowerJoular

	Energy Measurments
	Methodology
	Methods
	Elementary Operations
	Sequence of Operations

	Results

	Application to Sport Field: Football Match Analysis
	Conclusion
	References

